Essentials

AutoCAD®
Mechanical 2015
© 2014 Autodesk, Inc. All rights reserved.

Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks

The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries: 123D, 3ds Max, Algor, Alias, AliasStudio, ATC, AutoCAD LT, AutoCAD, Autodesk, the Autodesk logo, Autodesk 123D, Autodesk Homestyler, Autodesk Inventor, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSketch, AutoSnap, AutoTrack, Backburner, Backdraft, Beast, BIM 360, Burn, Buzzsaw, CADmep, CAiCE, CAMduct, CFDdesign, Civil 3D, Cleaner, Combustion, Communication Specification, Constructware, Content Explorer, Creative Bridge, Dancing Baby (image), DesignCenter, DesignKids, DesignStudio, Discreet, DWF, DWG, DWG (design/logo), DWG Extreme, DWG TrueConvert, DWG TrueView, DWGX, DXF, Ecocet, ESTmep, Evolver, FABmep, Face Robot, FBX, Fempro, Fire, Flame, Flare, Flint, FMDesktop, ForceEffect, FormIt, Freewheel, Fusion 360, Glue, Green Building Studio, Heidi, Homestyler, HumanIK, i-drop, ImageModeler, Incinerator, Inferno, InfraWorks, Instructables, Inventor LT, Inventor, Kynapse, Kynogen, LandXplorer, Lustre, MatchMover, Maya, Mechanical Desktop, MIMI, Mockup 360, Moldflow Plastics Advisers, Moldflow Plastics Insight, Moldflow, Moondust, MotionBuilder, Movimento, MPA (design/logo), MPA, MPI (design/logo), MPX (design/logo), MPX, Mudbox, Navisworks, ObjectARX, ObjectDBX, Opticore, Pipeplus, Pixlr, Pixlr-o-matic, Productstream, RasterDWG, RealDWG, ReCap, Remote, Revit LT, Revit, RiverCAD, Robot, Scaleform, Showcase, ShowMotion, Sim 360, SketchBook, Smoke, Socialcam, Softimage, Sparks, SteeringWheels, Stitcher, Stone, StormNET, TinkerBox, ToolClip, Topobase, Toxik, TrustedDWG, T-Splines, ViewCube, Visual LISP, Visual, VRED, Wire, Wiretap, WiretapCentral, XSI

All other brand names, product names, or trademarks belong to their respective holders.

Disclaimer

THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. “AS IS.” AUTODESK, INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published by:

ASCENT Center for Technical Knowledge
630 Peter Jefferson Parkway, Suite 175
Charlottesville, VA 22911
866-527-2368
www.ascented.com
Contents

Introduction ... ix

Class Files .. xiii

Chapter 1: Getting Started ... 1

- **Lesson: Interacting with the User Interface** 3
 - Overview ... 3
 - The User Interface .. 4
 - Application Menu .. 6
 - Workspaces ... 7
 - Exploring the Ribbon .. 8
 - File Tabs .. 10
 - Accessing Help Information ... 11
 - Exercise: Interact with the User Interface 13

- **Lesson: Common Drawing Setup** 15
 - Overview ... 15
 - About Drawing Templates ... 16
 - About Standards Based Design 17
 - Creating a New Drawing Based on a Template 19
 - Creating a New Template ... 20
 - Changing the Location of Templates 21
 - Exercise: Create and Use Template Drawings 23
 - Chapter Summary .. 25

Chapter 2: Object Property and Layer Management 27

- **Lesson: Property Management** 29
 - Overview ... 29
 - About Automatic Management of Layers 30
 - Managing Layers Using the Mechanical Layer Manager 31
 - How to Configure Object Property Settings in a Standard 35
 - Exercise: Automatic Property Management 38

- **Lesson: Layer Control** ... 41
 - Overview ... 41
 - Changing the Current Layer ... 42
 - Layer Functions ... 44
 - Layer Display .. 46
 - Exercise: Control Layer Display and Geometry on Layers 49
 - Chapter Summary .. 51
Chapter 3: Organizing Drawing Geometry 53

Lesson: Drawing Creation Workflows and Organization ... 55
- Overview .. 55
- About the Organization Methods ... 56
- About Mechanical Structure .. 58

Lesson: Structuring Data in Drawings ... 61
- Overview .. 61
- How to Create a Structured Design 62
- Creating Components and Component Views 63
- Creating Folders Within a Component View 68
- Restructuring Components 70
- Settings that Control Structure Creation 72

Exercise: Create a Drawing Using Structure ... 74

Lesson: Reusing and Editing Structured Data ... 79
- Overview .. 79
- About Structure Definitions, Instances, and Occurrences 80
- Reusing Structured Data from the Browser 82
- Reusing Structured Data From the Structure Catalog 86
- Edit a Structure Definition ... 93
- Changing the Display of Instances ... 99

Exercise: Reuse and Edit Structured Data ... 101

Chapter Summary ... 105

Chapter 4: Tools for Creating Key Geometry 107

Lesson: Core Design Tools ... 109
- Overview .. 109
- Creating Rectangles ... 110
- Placing Hatch ... 111
- Adding Fillets ... 115
- Adding Chamfers ... 117
- Creating Contours ... 120

Exercise: Create Geometry Using the Core Design Tools ... 125

Lesson: Power Snaps ... 128
- Overview .. 128
- About Power Snaps ... 129
- Configuring Power Snaps ... 130
- Activating Power Snap Configurations ... 133

Exercise: Configure and Activate Power Snaps ... 135

Lesson: Centerlines ... 139
- Overview .. 139
- About Mechanical Centerlines ... 140
- Centerline Settings ... 152

Exercise: Add Centerlines and Holes ... 154

Lesson: Construction Lines ... 157
- Overview .. 157
- About Construction Lines ... 158
- Drawing Construction Lines ... 159
Contents

Chapter 5: Tools for Manipulating Geometry ... 197
Lesson: Editing Tools ... 199
 Overview .. 199
 Copying Objects .. 200
 Offset objects .. 200
 Joining Entities .. 202
 Breaking Objects into Multiple Parts ... 203
 Scaling Objects Along the X and Y Axes ... 205
Exercise: Basic Editing Tools .. 207
Lesson: Power Commands .. 209
 Overview .. 209
 About Power Commands .. 210
 Modifying Objects ... 210
 Deleting Objects .. 211
 Copying Objects .. 212
 Recalling Commands .. 213
 Creating Views .. 213
Exercise: Use Power Commands .. 215
Lesson: Associative Hide .. 218
 Overview .. 218
 About Associative Hides .. 219
 Creating an Associative Hide .. 221
 Editing an Associative Hide ... 225
Exercise: Create and Edit Associative Hides ... 227
Exercise: Create and Edit Associative Hides - When Using Structure 231
Chapter Summary .. 235

Lesson: Designing with Lines .. 169
 Overview .. 169
 Creating Section Lines ... 170
 Creating Zigzag Lines .. 172
 Creating Breakout Lines ... 173
 Creating Symmetrical Lines .. 174
Exercise: Draw with Different Line Tools .. 176
Lesson: Adding Standard Feature Data for Holes and Slots 178
 Overview .. 178
 About Standard Content .. 179
 About Standard Features ... 181
 Inserting Standard Holes ... 183
 Inserting Threaded Features ... 187
 Inserting Slot Features ... 189
Exercise: Add Holes and Slots .. 192
Chapter Summary .. 195

Chapter Summary .. 235

Exercise: Create and Use Construction Lines .. 166
Lesson: Designing with Lines .. 169
 Overview .. 169
 Creating Section Lines ... 170
 Creating Zigzag Lines .. 172
 Creating Breakout Lines ... 173
 Creating Symmetrical Lines .. 174
Exercise: Draw with Different Line Tools .. 176
Lesson: Adding Standard Feature Data for Holes and Slots 178
 Overview .. 178
 About Standard Content .. 179
 About Standard Features ... 181
 Inserting Standard Holes ... 183
 Inserting Threaded Features ... 187
 Inserting Slot Features ... 189
Exercise: Add Holes and Slots .. 192
Chapter Summary .. 195

Chapter 5: Tools for Manipulating Geometry ... 197
Lesson: Editing Tools ... 199
 Overview .. 199
 Copying Objects .. 200
 Offset objects .. 200
 Joining Entities .. 202
 Breaking Objects into Multiple Parts ... 203
 Scaling Objects Along the X and Y Axes ... 205
Exercise: Basic Editing Tools .. 207
Lesson: Power Commands .. 209
 Overview .. 209
 About Power Commands .. 210
 Modifying Objects ... 210
 Deleting Objects .. 211
 Copying Objects .. 212
 Recalling Commands .. 213
 Creating Views .. 213
Exercise: Use Power Commands .. 215
Lesson: Associative Hide .. 218
 Overview .. 218
 About Associative Hides .. 219
 Creating an Associative Hide .. 221
 Editing an Associative Hide ... 225
Exercise: Create and Edit Associative Hides ... 227
Exercise: Create and Edit Associative Hides - When Using Structure 231
Chapter Summary .. 235
Chapter 6: Mechanical Part Generators ... 237
Lesson: Standard Parts ... 240
 Overview ... 240
 About Standard Parts .. 241
 Inserting Standard Parts Using the Parts Library 244
 Standard Part Library Favorites .. 246
 Inserting Standard Parts Using the Ribbon and Menus 249
 Inserting Screw Components .. 251
 Creating and Using Screw Templates 256
 Adding Leader Notes to Standard Parts 259
Exercise: Insert and Notate Standard Parts 262
Exercise: Insert from the Content Libraries Palette 266
Lesson: Chains and Belts ... 275
 Overview ... 275
 Creating Sprockets and Pulleys ... 276
 Calculate Chain and Belt Lengths 277
 Inserting Chains and Belts .. 279
Exercise: Design Chains and Belts ... 281
Lesson: Shaft Generator ... 284
 Overview ... 284
 Generating Shafts .. 285
 Creating Basic Shaft Sections .. 287
 Placing Shaft Contour Features .. 289
 Creating Complex Shaft Segments 291
 Inserting Shaft Display Features .. 294
 Creating Associative Shaft Views 297
Exercise: Place a Shaft in an Assembly 299
Lesson: Standard Shaft Parts .. 302
 Overview ... 302
 Inserting from the Shaft Generator 303
 Inserting from Other Locations ... 304
Exercise: Insert Standard Shaft Parts .. 308
Lesson: Springs .. 310
 Overview ... 310
 Process of Adding Springs to Your Assembly Design 311
 Inserting Springs from a Standard 314
 Inserting Modified Designed Springs 316
 Inserting Springs By Only Drawing the Geometry 319
Exercise: Insert a Spring .. 321
Chapter Summary ... 324

Chapter 7: Creating Drawing Sheets ... 325
Lesson: Model Space Views in Layouts .. 327
 Overview ... 327
 Creating Model Views in Layouts 328
 Creating Detail Views in a Layout .. 331
 Creating Scale Areas in Model Space 334
 Creating Viewports from Scale Areas 336
 Viewport Layer On/Off ... 337
Exercise: Create Viewports and Details in Layouts 338
Lesson: Creating Drawing Sheets in Model Space ... 343
 Overview ... 343
 Process of Plotting from Model Space ... 344
 Determining Scale Overrides ... 345
 Creating Detail Views in Model Space ... 346
 Exercise: Create Drawing Sheets in Model Space 348

Lesson: Annotation Views When Using Structure ... 351
 Overview ... 351
 About Annotation Views ... 352
 Creating Annotation Views ... 354
 Editing Annotation Views ... 358
 Exercise: Create and Edit Annotation Views ... 360

Lesson: Title Blocks and Drawing Borders ... 367
 Overview ... 367
 Inserting Drawing Title Blocks and Borders ... 368
 Replacing Inserted Title Blocks or Borders ... 371
 Editing Title Block Attribute Values ... 373
 Drawing Sheet Settings ... 374
 Title Block Layer On/Off ... 374
 Exercise: Insert Title Blocks and Borders ... 375
 Chapter Summary ... 377

Chapter 8: Dimensioning and Annotating Drawings ... 379

Lesson: Annotation and Annotation Symbols .. 382
 Overview ... 382
 Insert Text .. 383
 Inserting Weld Symbols ... 386
 Inserting Feature Control Frames ... 388
 Inserting Edge Symbols ... 391
 Symbol Libraries ... 393
 Inserting Weld Representations ... 396
 Inserting Datum Identifiers ... 398
 Inserting Feature Identifiers ... 400
 Inserting Datum Targets ... 401
 Inserting Taper and Slope Symbols ... 404
 Standards Symbol Settings ... 406
 Exercise: Annotate Parts and Subassemblies ... 407

Lesson: Creating Dimensions ... 412
 Overview ... 412
 Placing Power Dimensions ... 413
 Chamfer Dimensions ... 422
 Control Dimension Standards ... 427
 Exercise: Use the Power Dimension Command .. 429
 Exercise: Add Different Power Dimensions ... 432
 Exercise: Place Multiple Dimensions Automatically 436

Lesson: Editing Dimensions ... 438
 Overview ... 438
 Modifying Dimensions with Power Edit .. 439
 Editing Multiple Dimensions ... 439
 Stretching Objects with Dimensions ... 440
Arranging Dimensions .. 442
Aligning Dimensions .. 443
Joining Dimensions ... 444
Splitting Dimensions ... 445
Breaking Dimension Lines .. 445
Checking Dimensions .. 446
Exercise: Edit Dimensions ... 448

Lesson: Hole Charts and Fits Lists ... 451
Overview ... 451
Creating Hole Charts .. 452
Hole Chart Settings ... 456
Placing a Fits List ... 457
Exercise: Add Hole Charts and Fits Lists 459

Lesson: Revision Lists ... 462
Inserting Revision Lines in Drawings .. 463
Inserting Automatic Revision List ... 464
Updating Revision List ... 466
Exercise: Create a Revision List .. 468
Chapter Summary ... 470

Chapter 9: Bill of Materials, Parts Lists, and Balloons 471
Lesson: Part References .. 474
Overview ... 474
About Part References .. 475
Adding Part References .. 476
Editing Part References ... 478
Exercise: Create Part References ... 481

Lesson: Bill of Materials .. 483
Overview ... 483
Creating Bill of Materials .. 484
Structured Components and the BOM 486
Expanding Subassembly Information 489
Sorting BOM Data ... 491
Renumbering BOM Entries .. 492
Bill of Material Standards ... 493
Exercise: Create and Edit a Bill of Materials 494
Exercise: Create and Edit a Bill of Materials - When Using Structure 497

Lesson: Inserting Parts Lists .. 500
Overview ... 500
Inserting a Parts List ... 501
Editing a Parts List ... 503
Parts List Standards .. 505
Exercise: Insert and Edit Parts Lists .. 506
Exercise: Insert and Edit Parts Lists When Using Structure 509

Lesson: Ballooning Parts .. 511
Overview ... 511
Adding Balloons ... 512
Editing Balloons ... 514
Balloon Standards ... 516
Exercise: Add Balloons to Assembly Drawings 518
Chapter Summary ... 523
Chapter 10: Design Calculations .. 525
Lesson: Design Calculations ... 527
 Overview ... 527
 About the Calculation Tools ... 528
 Calculating Moment of Inertia .. 529
 Calculating Moment of Inertia with Predefined Profiles 532
 Calculating Deflection Line .. 533
 Calculating Shaft Stresses .. 535
 Calculating the Finite Element Analysis 538
Exercise: Calculate Moments of Inertia 543
Exercise: Calculate the Deflection Line 545
Exercise: Calculate Shaft Strength 547
Exercise: Calculate FEA Stresses ... 549
Chapter Summary ... 553
Lesson: DWG Files ... 557
 Overview ... 557
 Mechanical Drawing Files in AutoCAD 558
 Removing Mechanical Objects & Structure from the DWG File ... 559
Exercise: Remove Mechanical Content from a Drawing 561
Lesson: IGES Files ... 563
 Overview ... 563
 IGES In .. 564
 IGES Out .. 565
Lesson: Model Documentation ... 566
 Overview ... 566
 About Model Documentation ... 567
 Using Model Documentation ... 567
 Base View .. 568
 Projected View .. 570
 Editing Drawing Views ... 572
Exercise: Create Views Associated to an Autodesk Inventor 3D Model 573
Chapter Summary ... 575
Chapter 12: Mechanical Options for the CAD Manager 577
Lesson: Standards-Based Design ... 579
 Overview ... 579
 Introduction to Standards-Based Design 580
 Selecting a Standard and Creating a Custom Standard 582
 Setting the Model Scale ... 583
 Setting a Default Standards Template 585
Exercise: Create and Set a Default Standard Template 586
Lesson: Configure Layer, Text, and Object Properties 588
 Overview ... 588
 Configuring Layers .. 589
 About Standard Elements and Accessing Their Settings 592
 Configuring Standard Properties 593
Exercise: Configure Layers and Object Properties 596

Contents
<table>
<thead>
<tr>
<th>Lesson: Configure the Annotation Tools</th>
<th>601</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>601</td>
</tr>
<tr>
<td>About Dimensions and Annotation</td>
<td>602</td>
</tr>
<tr>
<td>Configuring Dimension Styles</td>
<td>603</td>
</tr>
<tr>
<td>Configuring Hole Charts</td>
<td>610</td>
</tr>
<tr>
<td>Configuring Drawing Sheets</td>
<td>613</td>
</tr>
<tr>
<td>Configuring Notes</td>
<td>616</td>
</tr>
<tr>
<td>Other Annotation Symbols and Their Settings</td>
<td>618</td>
</tr>
<tr>
<td>Exercise: Set Annotation Properties</td>
<td>626</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesson: Configure Component Properties, BOMs, Parts Lists, and Balloons</th>
<th>629</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>629</td>
</tr>
<tr>
<td>About BOM Data</td>
<td>630</td>
</tr>
<tr>
<td>Configuring BOM Settings for BOM Related Items</td>
<td>631</td>
</tr>
<tr>
<td>Available Component Properties</td>
<td>634</td>
</tr>
<tr>
<td>Configuring Component Properties</td>
<td>636</td>
</tr>
<tr>
<td>Configuring the BOM</td>
<td>638</td>
</tr>
<tr>
<td>Configuring the Parts List</td>
<td>640</td>
</tr>
<tr>
<td>Configuring the Balloons</td>
<td>643</td>
</tr>
<tr>
<td>Exercise: Configure Properties, BOM, Parts List, and Balloons</td>
<td>646</td>
</tr>
<tr>
<td>Chapter Summary</td>
<td>650</td>
</tr>
</tbody>
</table>

Sample provided by ASCENT for review only
Introduction

Welcome to the AutoCAD Mechanical 2015 Essentials training guide for use in Authorized Training Center (ATC®) locations, corporate training settings, and other classroom settings.

Although this training guide is designed for instructor-led courses, you can also use it for self-paced learning. The training guide encourages self-learning through the use of the AutoCAD® Mechanical Help system.

This introduction covers the following topics:

- Course objectives
- Prerequisites
- Using this guide
- Downloading and installing the Class Files
- Notes, tips, and warnings
- Feedback
- Free Autodesk software for students and educators

This training guide is complementary to the software documentation. For detailed explanations of features and functionality, refer to the Help in the software.

Course Objectives

After completing this training guide, you will be able to:

- Identify the main interface elements, their setup and what Help information is available, and to create and use drawing template files.
- Describe the object property management system in which layers are configured and the tools for manipulating layers.
- Describe the workflows for organizing drawing geometry and create a Mechanical structure in a drawing by creating components, component views, and folders.
- Describe the core mechanical design tools of rectangle, hatch, fillet, chamfer, holes, slots, and threads and how to use them to create and modify geometry in your drawings.
- Modify and edit drawing objects by creating multiple offset copies, scaling them with separate values for the X and Y direction, or using a power command.
- Insert industry standard parts into your assembly designs.
- Create production-ready drawings in model space and layouts of structured and non-structured geometry and insert title blocks and borders.
- Notate a drawing through the creation and editing of dimensions, hole charts, fits lists, and mechanical symbols.
- Explain how to create and edit a bill of materials, parts list, and balloons.
- Describe the tools that you can use to verify whether or not the standard parts or custom parts within your design meet or exceed the requirements for operational use.
- Exchange data between CAD systems in the form of Mechanical DWG™ and IGES files and create Mechanical drawings using Inventor Link.
- Create a custom drafting standard and drawing template that includes the configuration settings for layers, object properties, symbols, text, BOMs, parts list, balloons, and other annotation tools.

Prerequisites

This guide is designed for users who are new to the AutoCAD® Mechanical 2015 software.

- A basic understanding of mechanical drafting or design.
- A working knowledge of the AutoCAD® software.
- A working knowledge of the Microsoft® Windows® XP, Microsoft® Windows® Vista, or Microsoft® Windows® 7 operating systems.

Using This Guide

The lessons are independent of each other. However, it is recommended that you complete these lessons in the order in which they are presented unless you are familiar with the concepts and functionality described in those lessons.

Each chapter contains:

- **Lessons** - Usually two or more lessons in each chapter.
- **Exercises** - Practical, real-world examples for you to practice using the functionality that you have just learned. Each exercise contains step-by-step procedures and graphics to help you complete the exercise successfully.

Downloading and Installing the Class Files

The Class Files page in this Training Guide contains a link to all of the data and drawings needed to complete the exercises. To install the data files for the exercises:

1. Type or click the link, provided in the Class Files page of the training guide, into a web browser and download the .exe file containing the Class Files.
2. Extract the .exe file to C:. This should be a directory for which you have read\write privileges for your user account. A folder called C:\AutoCAD Mechanical Essentials Class Files is created, containing the files that are required for each exercise in this training guide.

Notes, Tips, and Warnings

Throughout this training guide, notes, tips, and warnings are called out for special attention.

- **Notes** contain guidelines, constraints, and other explanatory information.
- **Tips** provide information to enhance your productivity.
Warnings provide information about actions that might result in the loss of data, system failures, or other serious consequences.

Feedback

We always welcome feedback on Autodesk Official Training Courseware. After completing this course, if you have suggestions for improvements or want to report an error in the training guide or with the class files, please send your comments to feedback@ascented.com.

Free Autodesk Software for Students and Educators

The Autodesk Education Community is an online resource with more than five million members that enables educators and students to download for free the same software used by professionals worldwide (see website for terms and conditions). You can also access additional tools and materials to help you design, visualize, and simulate ideas. Connect with other learners to stay current with the latest industry trends and get the most out of your designs.

Get started today. Register at the Autodesk Education Community (www.autodesk.com/joinedu) and download one of the many available Autodesk software applications.

Note: Free products are subject to the terms and conditions of the end-user license and services agreement that accompanies the software. The software is for personal use for education purposes only and is not intended for classroom or lab use.
Getting Started

In this chapter, you learn how the AutoCAD® Mechanical interface is set up. You become familiar with where to find various commands, and learn how to create drawing template files and to use them when creating new drawings.

Objectives

After completing this chapter, you will be able to:

- Identify the main interface elements, their setup, and the available Help information.
- Create and use drawing template files.
Lesson: Interacting with the User Interface

Overview

This lesson describes the AutoCAD Mechanical interface, how to change different parts of it, and how to access helpful information when needed.

To work comfortably, confidently, and quickly in any software application, you need to learn the different parts of its user interface. When you know how to adjust the user interface to match your workflow requirements, you can work comfortably and efficiently. Learning where to access information when you need it helps you to continue to improve your abilities and skills.

The following illustration shows the upper-left area of the user interface in its default configuration.

Objectives

After completing this lesson, you will be able to:

- Describe the parts of the user interface.
- Explore and explain the purpose of the Ribbon and control its display.
- Access Help and other useful information using the InfoCenter.
The User Interface

The AutoCAD Mechanical software has a similar look and feel to the standard AutoCAD® software because it uses the AutoCAD software at its core. You interact with the AutoCAD Mechanical user interface to create and modify geometry as you do in the standard AutoCAD software. The Ribbon, drop-down lists, toolbars, drawing window, shortcut menus, Command Line, and Status Bar all function as they do in the standard AutoCAD software, depending on which workspace is selected. However, although the interface might feel the same and you can use the commands that you are accustomed to, you need to learn how to interact with the AutoCAD Mechanical software. It contains a number of commands, tools, and workflows that were specifically established to help you create your mechanical designs and drawings more quickly while meeting the requirements of industry and company standards.

Parts of the User Interface

The initial display and position of the Ribbon, menus, toolbars, and palettes in the user interface depends on the active workspace. The AutoCAD Mechanical Ribbon is organized to align with the AutoCAD Ribbon where possible and includes additional tabs and panels for unique AutoCAD Mechanical commands. The Ribbon panels are organized to align with the tasks for completing a mechanical design and include the unique tools and commands of the AutoCAD Mechanical software.

As you create and edit geometry in the AutoCAD Mechanical software, using the various palettes can be beneficial. Different palettes help you access commands more efficiently and others make it easier and faster to change the properties of objects. Each palette can be independently set to dock, anchor, float, or auto hide at a specific location within the user interface.

The Ribbon, Quick Properties, and Properties palettes are all palettes that are available in the standard AutoCAD software and in the AutoCAD Mechanical software. You can use the Ribbon to access a number of AutoCAD and AutoCAD Mechanical commands from a single location. The Properties and Quick Properties palettes enable you to make various edits to all types of existing drawing objects.

When you are creating and editing drawings that use the Mechanical structure, you interact with two additional palettes that are unique to the AutoCAD Mechanical: Browser and Structure Catalog. The Browser palette is used to display, hide, move, and edit 2D mechanically structured content. You also use it to create and modify viewports in a layout. The Structure Catalog palette enables you to access and reuse structured geometry.

In the following illustration, the default workspace Mechanical is active and the different primary areas of the user interface are identified.
1. Application Menu and Quick Access Toolbar
2. Ribbon
3. Drawing Area
4. Command Window
5. Status Bar and workspace
6. InfoCenter and Communication Center
7. File Tabs
Chapter 1: Getting Started

Application Menu

You can use the Application Menu to access several key commands as shown in the following illustration. Most of these commands contain submenus with more detailed options.

Tasks that you can accomplish include:

- Saving or exporting files.
- Opening recently opened documents.
- Accessing the options.
- Searching for a command.
- Printing documents.

Using the Search function, you can locate one or more commands that are related to the keyword that you in the Search field. For example, if you want to know which commands are available to draw centerlines, entering `centerline` returns all commands that contain the word centerline, as shown in the following illustration. The search results list the commands and the menu in which they are located. Clicking a listed search result starts that command.
Workspaces

To help you access the commands that you want to use, the AutoCAD Mechanical software has several preset workspaces you can use. Each workspace controls the display settings and location of the Ribbon, toolbars, and Browser. The tabs that are available on the Ribbon also change, depending on the selected workspace. These different workspaces can help you work more efficiently, and enable you to create a design environment that suits your needs. You can create a custom workspace from one of the preset workspaces to further refine the interface with the tools that you want to use. If you change the display settings or position of items in the interface, you can quickly reset the interface by reselecting the workspace.

By default, the software includes the following workspace configurations:

- Mechanical
- Structure
- 3D Basics
- 3D Modeling

You can switch between defined workspaces by selecting the required workspace from the Workspace Switching icon in the Status Bar, as shown in the following illustration.
Exploring the Ribbon

The Ribbon is an important part of the user interface and it enables you to efficiently access multiple commands. As you become increasingly familiar with the Ribbon, you can use it to improve your design creation and editing time.

The Ribbon supports the heads-up design process because it is space efficient and eliminates the clutter of tool palettes and toolbars. Using the Ribbon alone provides you with more space on your screen in the drawing area and enables you to maintain access to the tools and controls you need.

About the Ribbon

The Ribbon is a special tool palette that contains the tools and controls relevant to the active workspace. It is divided into areas that contain groups of tools called panels. Each separate panel contains related tools, such as those used for adding dimensional constraints, adding symbols, or adding hole features. Some panels can be expanded to display more tools. You can also customize and save your Ribbon configuration.

Examples of the Mechanical and Structure Ribbons

The following illustration shows the contents of the Ribbon when the Mechanical workspace is active.

The following illustration shows the contents of the Ribbon when the Structure workspace is active. Note the extra tab on the Ribbon for managing Structure.

Ribbon Controls

The Ribbon is turned on by default when you start the software in either the Mechanical or Structure workspace. The Ribbon is organized into a series of tabs. Each tab includes a different set of panels with related commands and controls that can be found on the Mechanical Classic toolbars and dialog boxes.

You can turn the tabs and associated panels in the Ribbon on or off by right-clicking in the Ribbon area and selecting Show Tabs or Show Panels. You can also turn panel titles on or off by right-clicking on the panel tabs. Additionally, you can save your Ribbon configuration.

Each tab in the Ribbon has its own set of panels that contain groups of related tools, such as those for using content, adding text, or adding dimensions. Some panels can be expanded to display more tools. Some tools can also be expanded to display more options (such as the Power Dimension tool), as indicated by an arrow in the corner of the icon.
Lesson: Interacting with the User Interface

Add or Remove Tabs

To turn specific tabs on or off, right-click on the Ribbon and select Show Tabs. You can then select a tab name to display or remove tabs from the Ribbon. Tabs that are currently displayed are indicated by a check mark as shown in the illustration below.

Panels

The AutoCAD Mechanical software uses Ribbon panels as one method of accessing commands and settings. Each panel consists of a collection of tools that perform related or similar tasks.

When using the Mechanical workspace, a standard set of panels is displayed on each of the tabs in the Ribbon at the top of the drawing area. Note that when you select a different tab, a different set of panels is displayed.

By default, each panel is docked at the top of the drawing area in the Ribbon.
Panel Visibility

To turn specific panels on or off, right-click in the Ribbon and select Show Panels. Select to display or remove panels from the Ribbon tab. Panels that are currently displayed are indicated by a check mark, as shown in the illustration below. Panels containing toolbars display in the last position (docked or floating) that they were in before they were removed from the display.

Panel Tools Visibility

Some panels cascade to reveal additional tools when you select the black arrow in the lower right corner of the panel. You can keep these panels open to display all of the tools by selecting the thumbtack located in the lower left corner of the expanded panel.

File Tabs

The drawing File Tabs enable you to quickly switch between open drawings or creating a new ones. If you close all of the drawings that are currently open or click (New Tab), the New Tab displays. It contains two content frames: Learn and Create. The Learn frame contains videos and online resources to enable you to learn about new items in the software and how to start using the software. The Create frame contains tools to enable you to start using the software by creating new drawings, or opening existing, sample, or recently used files. You can also access product updates, and connect to Autodesk 360 to access online services.
Accessing Help Information

A key part of your continual learning is knowing how and where to get more information when you need it. In the AutoCAD Mechanical software, you can access different areas and types of information that you can use to help you relearn a topic, expand your understanding of a topic, or learn a new topic.

Accessing Help Information

Your point of access for additional information is through the InfoCenter toolbar, which is located on the title bar of the main AutoCAD Mechanical interface. From the InfoCenter, you can search the Help System, sign in to Autodesk 360, launch the Autodesk Exchange Apps website, and download offline help.

The AutoCAD Mechanical Help system window gives you access to a variety of topics on the Home page. You can directly access product information on specific topics, learn what's new in the latest version of the AutoCAD Mechanical software, and access the online community. If you need to access the Help system when you are not connected to the internet, you can download the Offline Help system for use during that time.
Procedure: Accessing Help Information

To access help information in the AutoCAD Mechanical software, complete the following steps:

1. On the InfoCenter toolbar, type a keyword or phrase and press ENTER. Alternatively, to the right of the Help button, click the drop-down arrow and select Help.

2. Determine the topic or type of information you need assistance with or are trying to learn more about.
Exercise: Interact with the User Interface

In this exercise, you will interact with the AutoCAD Mechanical user interface by accessing commands using different workflows and changing the display of different parts of the user interface.

1. Open Interact with the User Interface.dwg.

2. To begin drawing a rectangle so its middle aligns with the center of the existing circle, click Home tab > Draw panel > expand the Rectangle drop-down list > More Rectangles.

3. In the Rectangles dialog box, in the Rectangle tab, select the center rectangle with a Full Base and Full Height. Click OK.

4. To set the rectangle location and size:
 - In the drawing area, object snap to the center of the circle.
 - For Full Base, enter 400.
 - For Full Height, enter 100.

5. In the Status Bar, click the workspace switching icon. In the list of workspaces, select Structure. The Ribbon and Mechanical Browser should display as shown in the following illustration.

6. To minimize the Ribbon so that only the panel titles are displayed, click on the Ribbon title bar twice to cycle through different minimizing options. You can also select the Minimize to Panel Titles from the arrow drop-down list.

7. To remove the Parametric tab from the Ribbon, right-click on one of the tab titles in the Ribbon, select Show Tabs, and then select Parametric to uncheck the box. Review the Ribbon to see that the Parametric tab has been removed.

8. To restore the Ribbon, double-click on the Ribbon title bar until the required display method is restored.
9. To search for the commands that enable you to draw centerlines, do the following:
 - Click the Application button.
 - In the Search field, enter **centerline**.
 - In the Matches list, click Centerline Cross to start the command.

10. In the drawing area, object snap to the center of the circle and then to a quadrant on the circle to create the centerline as shown in the following illustration.

11. Save and close the file.
Lesson: Common Drawing Setup

Overview

This lesson describes the creation of drawing template files and the use of drawing templates for the creation of a new drawing.

Using drawing template files, you can maintain a consistent look and style across your drawings. Template files can also improve your productivity by decreasing the repetitive task of configuring the settings in a new drawing.

Objectives

After completing this lesson, you will be able to:

- Describe the purpose and benefit of drawing template files.
- Explain how mechanical standards impact the creation of drawing geometry.
- Create a new drawing based on an existing template file.
- Create a new drawing template file.
- Change the default location from which template files are accessed and saved.
About Drawing Templates

Learning to create and use template files is easier and more understandable if you know the purpose and benefits of using drawing templates.

Definition of Drawing Templates

You use drawing templates to provide a starting point for all of the new drawings that you create. In most design environments, the drawings that you create share some common properties and settings. Your company might have specific standards that each drawing must match, or your client might have specific requirements to which your drawing must adhere.

Several drawing templates are included with the software. Most of them are suitable for getting started and you can build on them to create a custom set of templates that are specific to your drawing requirements. When you save a drawing template, you save all of the drawing commonalities, eliminating the need to create or adjust properties and settings each time you create a new drawing.

Commonalities between drawings include:

- Configuration settings in the drawing, such as text styles and unit precision.
- Common blocks that you use to annotate drawings.
- Layout configurations and the insertion of borders and title blocks.
- Various settings in the Options dialog box. If the AutoCAD drawing symbol precedes a setting in the Options dialog box, any changes you make to that setting are specific to that drawing or template file. Therefore, make sure that the settings you change from the defaults are saved as part of your template. The AutoCAD Mechanical software adds seven tabs to the Options dialog box with additional configuration options and settings. Each of these tabs has AM: as a prefix to its name.
- The standard on the AM:Standards tab that you want active in the drawing. Within that standard, the different categories, such as layers, dimensions, borders, title blocks, parts lists, etc., would have their settings configured to match your requirements for the use of this template.

Drawing template files are differentiated from drawing files by their DWT file extension.

Example of Drawing Templates

You can set and save many options in a template file so that they are already configured in any drawing created from that template file. For AutoCAD Mechanical software drawing files, one of the most important items to configure and set to be current is the mechanical standard.

In the following illustration, the template file being created has the custom mechanical Standard of COMPANY XYZ set to active. This standard is based on the ISO standard and is configured to have all layers, dimensions, hole charts, drawing sheets, etc., match the final requirements for the drawings that use this template as a starting point.
About Standards Based Design

To assist in the communication of design data, different industry organizations have established different standards. By learning how to configure and use the AutoCAD Mechanical software, your drawings conform to these standards and to any variations specified by your company.

In the following illustration, the custom standard called COMPANY XYZ is being selected to make it the active standard. This custom standard is initially based on one of the industry standards.

Definition of Standards Based Design

Standards-based design means that you create geometry and annotation that meets industry-accepted standards, such as ANSI, ISO, and DIN. It also means that you meet any company-specific variation to those industry standards. A standard contains multiple elements that you can edit to achieve the settings specific to your requirements. Customizing an existing standard can include, but is not limited to, changing the assigned layer geometry, changing how dimensions are to display, selecting which welding symbols can be added to the drawing, and defining the information to be stored in the BOM. You can activate or modify a standard on the AM:Standards tab in the Options dialog box.

To create design data that meets these standards, you can use the AutoCAD Mechanical software tools in place of the AutoCAD software drawing and modifying tools. You can apply your drawing standards to all new drawings that you create in the AutoCAD Mechanical software and to previously existing AutoCAD software drawing (DWG™) files that are opened in the AutoCAD Mechanical software.
In the following illustration, the Object Property Settings dialog box displays a list of some of the layer and object property configuration settings for the active standard. The settings in the active standard help you to ensure that all of the geometry that you create in the drawing is created on the proper layer with the correct properties. Because the objects are mapped to a layer that you configure to meet your company standards, you can focus on creating the design geometry and not on the layer on which you are creating the geometry.

Example of Standards Based Design

Using the standards-based drafting and design tools in the AutoCAD Mechanical software, the two views of a spacer plate for planting corn seed were created following both the industry standards for notation and the company standards for layer settings and use.
Creating a New Drawing Based on a Template

To realize how much time you save when using a template file, you must know how to create a new drawing that is based on an existing template.

In the following illustration, the AutoCAD Mechanical software default templates are shown in the Select template dialog box.

Access

Command Line: **NEW**
Menu Bar: File > New
Toolbar: Quick Access Toolbar
Application Menu: New

If you use the QNEW command, and the Default Template File Name for QNEW option is set to a value other than the default None, you are not prompted to select which template to use for the new drawing.

Procedure: Creating a New Drawing Based on a Template

To create a new drawing based on an existing template file, complete the following steps:

1. In the Quick Access toolbar, click New.
2. In the Select Template dialog box, select the DWT template file that best matches your starting configuration requirements in the default folder or a folder to which you navigate.
Creating a New Template

You can create multiple templates when your setting requirements for new drawings vary. Each of the multiple templates contains the settings that match the requirements for those new drawings. To create a single template or multiple templates with varying settings, you need to learn how to create a new drawing template.

In the following illustration, a new drawing template file is being saved with the name COMPANY XYZ.

Access

- Command Line: SAVEA
- Menu Bar: File > Save As
- Toolbar: Quick Access Toolbar
- Application Menu: Save As

To save the file as a template after executing the Save As command, you must select AutoCAD Mechanical Drawing Template (*.dwt) from the Files of Type list in the Save Drawing As dialog box. When you select this file type, the active folder for saving this file is changed to the folder specified in the Options dialog box.

To edit a template file, you can open the file as you would any other standard drawing file. The exception is in the Select File dialog box in which you can select Drawing Template (*.dwt) from the Files Type list. Selecting this file type can change the active folder from which you are opening files.

Procedure: Creating a New Template

An overview of creating a new drawing template file is shown in the following steps:

1. Open a drawing or template on which you want to base a new template.
2. Change the mechanical standard and other settings in the opened file to match your requirements for the new template file.
3. Click Application Menu > Save As.
4. In the Save Drawing As dialog box, in the Files of Type list, select AutoCAD Mechanical Drawing Template (*.dwt).
5. Navigate to the folder in which you want to save the template.
6. Enter a file name for the new template.
7. In the Template Options dialog box, click OK.
Changing the Location of Templates

For file security and productivity, you should learn why and how to change the default location from which template files are accessed and saved.

In the following illustration, the default folder location from which the template files are accessed and saved has been changed. Now when the Select Template dialog box opens, it automatically accesses this new location. This new location only contains the template files that are used by you and members of your design team.

![Image: Custom Templates]

CAD Management of Templates

For file management purposes, you should save your template files in a central location within your file backup system. You can then change the path in your installation of the AutoCAD Mechanical software so that each time you create a new drawing, you can select the templates from that central location. If you are working in an environment in which multiple people need to create new drawings using the same template or set of templates, you can locate that central storage for the templates on a network drive and then change the template file location path to point to that network location.

It is easy to update templates when they are stored in a single location because you only need to edit a single file in a single location. Because everyone who uses the template accesses it from a single location, when you save the template with the changes, people automatically use that template’s current settings when they create a new drawing.

Drawing Template File Location

To change the location from which the template files are accessed and saved, you can specify a new path in the Options dialog box. To access this path setting on the Files tab, click the plus sign (+) to expand the tree view for Template Settings and then select Drawing Template File Location, as shown in the following illustration. To specify a new path, click on the current path and a new one, or click Browse to navigate to and select the folder.

![Image: Options]

By changing the path under the Default Template File Name for QNEW category, you can specify which template file should be used automatically when the QNEW command is executed.
Procedure: Changing the Location of Templates

To change the folder location for accessing and saving template files, complete the following steps:

1. In the Options dialog box, click the Files tab.

2. In the Search Paths, File Names, and File Locations list, expand the tree view for Template Settings and then select Drawing Template File Location.

3. Enter a new local or network folder location or click Browse to select one.
Exercise: Create and Use Template Drawings

In this exercise, you will create template drawings and new drawings using one of the template files. You will also set a new folder location for saving and accessing template files.

1. Open Common Drawing Setup.dwg.
2. To change the active mechanical standard, do the following:
 - On the Application Menu, click Options.
 - In the Options dialog box, AM:Standards tab, on the Standard list, click PROJECT ABC.
 - Click OK.
3. To change the display precision for the units, on the Application Menu, click Drawing Utilities > Units. In the Drawing Units dialog box, change the precision to three decimal places and click OK.
4. To create a template from this open drawing, do the following:
 - On the Application Menu, click Save As.
 - In the Save Drawing As dialog box, from the Files of type list, select AutoCAD Mechanical Drawing Template (*.dwt).
 - Note the template files listed in the current folder.
 - Enter Common Setup.
 - Click Save.
5. In the Template Options dialog box, click OK.
6. Close all open files.
7. To create a new drawing based on the template you just created, do the following:
 - On the Quick Access Toolbar, click New.
 - Review the list of available templates from which you can select.
 - In the Select Template dialog box, select Common Setup.dwt.
 - Click Open.
8. On the Application Menu, click Options to make sure that PROJECT ABC is the active standard.
9. To change the folder in which template drawings are saved and accessed, do the following:
 - In the Options dialog box, click the left scroll arrow to the right of the tabs to scroll and view the Files tab.
 - Click the Files tab.
10. On the Files tab, in the Search Paths, file names, and file locations list, expand the tree view for Template Settings and expand Drawing Template File Location. Click the listed path.

11. Note the current folder location and path so that you can specify it again after completing this exercise. The default path is `C:\Users\<user name>\appData\local\Autodesk\AutoCAD Mechanical<version><revision><language>\acadm\template`.

12. To specify a new folder location, do the following:
 - Click Browse.
 - In the Browse for Folder dialog box, expand the folders to the location in which you installed the dataset for this training guide (C:\AutoCAD Mechanical Essentials Class Files) and select the Custom Templates folder.
 - Click OK.

13. In the Options dialog box, click OK.

14. On the Application Menu, click Save As.

15. To save the file as a template, do the following:
 - In the Save Drawing As dialog box, in the Files of type list, select AutoCAD Mechanical Drawing Template (*.dwt).
 - Note of the folder location in which this template will be saved.
 - Enter `Common Setup2`.
 - Click Save.

16. In the Template Options dialog box, click OK.

17. Close all open files.

18. Using Windows Explorer, copy the `Common Setup.dwt` file from the default template file location (`C:\Users\<user name>\AppData\Local\Autodesk\AutoCAD Mechanical<version><revision><language>\acadm\template`) to the new template path (`C:\AutoCAD Mechanical Essentials Class Files\Custom Templates`).

 Note: You might need to all or part of the path if the Appdata subfolder is not visible.

19. On the Quick Access Toolbar, click New. Do the following:
 - Review the available templates.
 - Select `Common Setup.dwt`.
 - Click Open.

20. Close all open files.
Chapter Summary

In this chapter, you learned how to use the AutoCAD Mechanical interface. You also became familiar with finding various tools and menus, learned how to create drawing template files, and how to use drawing templates for the creation of a new drawings.

Having completed this chapter, you can:

- Identify the main interface elements, their setup, and the available Help information.
- Create and use drawing template files.