ASCENT - Center for Technical Knowledge®
ENOVIA V5-6R2017: DMU Kinematics
1st Edition

Prepared and produced by:
ASCENT Center for Technical Knowledge
630 Peter Jefferson Parkway, Suite 175
Charlottesville, VA 22911
866-527-2368
www.ASCENTed.com

Lead Contributor: Scott Hendren

ASCENT - Center for Technical Knowledge is a division of Rand Worldwide, Inc., providing custom
developed knowledge products and services for leading engineering software applications. ASCENT is
focused on specializing in the creation of education programs that incorporate the best of classroom
learning and technology-based training offerings.

We welcome any comments you may have regarding this learning guide, or any of our products. To contact
us please email: feedback@ASCENTed.com.

© ASCENT - Center for Technical Knowledge, 2018

All rights reserved. No part of this guide may be reproduced in any form by any photographic, electronic,
mechanical or other means or used in any information storage and retrieval system without the written
permission of ASCENT, a division of Rand Worldwide, Inc.

CATIA and ENOVIA are registered trademarks of Dassault Systèmes.

All other brand names, product names, or trademarks belong to their respective holders.

General Disclaimer:
Notwithstanding any language to the contrary, nothing contained herein constitutes nor is intended to
constitute an offer, inducement, promise, or contract of any kind. The data contained herein is for
informational purposes only and is not represented to be error free. ASCENT, its agents and employees,
expressly disclaim any liability for any damages, losses or other expenses arising in connection with the use
of its materials or in connection with any failure of performance, error, omission even if ASCENT, or its
representatives, are advised of the possibility of such damages, losses or other expenses. No consequential
damages can be sought against ASCENT or Rand Worldwide, Inc. for the use of these materials by any third
parties or for any direct or indirect result of that use.

The information contained herein is intended to be of general interest to you and is provided “as is”, and it
does not address the circumstances of any particular individual or entity. Nothing herein constitutes
professional advice, nor does it constitute a comprehensive or complete statement of the issues discussed
thereto: ASCENT does not warrant that the document or information will be error free or will meet any
particular criteria of performance or quality. In particular (but without limitation) information may be rendered
inaccurate by changes made to the subject of the materials (i.e. applicable software). Rand Worldwide, Inc.
specifically disclaims any warranty, either expressed or implied, including the warranty of fitness for a
particular purpose.
Contents

Preface .. v
In this Guide .. vii
Practice Files ... ix

Chapter 1: Introduction to DMU Kinematics ... 1-1
 1.1 Fundamentals .. 1-2
 1.2 DMU Kinematics Interface ... 1-3
 Access DMU Kinematics workbench ... 1-3
 DMU Kinematics User Interface ... 1-3
 1.3 Kinematic Analysis Process .. 1-4
 1.4 Defining a Simulation .. 1-5
 Modifying a Joint .. 1-10
 Deleting a Joint .. 1-10
 Degrees of Freedom .. 1-12
 1.5 Mechanism Analysis .. 1-13
 1.6 Simulating with Commands ... 1-14
 Practice 1a Create a Mechanism ... 1-15

Chapter 2: Constraint-Based Joints ... 2-1
 2.1 Constraint-Based Joints ... 2-2
 2.2 Prismatic Joint ... 2-3
 2.3 Cylindrical Joint .. 2-5
 2.4 Screw Joint .. 2-7
 2.5 Spherical Joint ... 2-9
 2.6 Planar Joint .. 2-10
 2.7 Rigid Joint .. 2-11
 Practice 2a Create a Prismatic Mechanism .. 2-12
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice 2b Create a Cylindrical Mechanism</td>
<td>2-15</td>
</tr>
<tr>
<td>Practice 2c Create a Screw Mechanism</td>
<td>2-18</td>
</tr>
<tr>
<td>Practice 2d (Optional) Create a Slide Block Mechanism</td>
<td>2-21</td>
</tr>
<tr>
<td>Chapter 3: Curve/Surface-Based Joints</td>
<td></td>
</tr>
<tr>
<td>3.1 Point Curve Joints</td>
<td>3-2</td>
</tr>
<tr>
<td>3.2 Slide Curve Joint</td>
<td>3-3</td>
</tr>
<tr>
<td>3.3 Roll Curve Joint</td>
<td>3-4</td>
</tr>
<tr>
<td>3.4 Point Surface Joint</td>
<td>3-5</td>
</tr>
<tr>
<td>Practice 3a Slot Follower Mechanism</td>
<td>3-6</td>
</tr>
<tr>
<td>Practice 3b Create a Cam Mechanism</td>
<td>3-11</td>
</tr>
<tr>
<td>Practice 3c Roll Curve Joint</td>
<td>3-15</td>
</tr>
<tr>
<td>Chapter 4: Ratio-Based Joints</td>
<td></td>
</tr>
<tr>
<td>4.1 Ratio-Based Joints</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2 Universal Joint</td>
<td>4-3</td>
</tr>
<tr>
<td>4.3 Gear Joint</td>
<td>4-5</td>
</tr>
<tr>
<td>4.4 Cable Joint</td>
<td>4-7</td>
</tr>
<tr>
<td>4.5 Rack Joint</td>
<td>4-9</td>
</tr>
<tr>
<td>4.6 Constant Velocity Joint</td>
<td>4-11</td>
</tr>
<tr>
<td>4.7 Axis-based Joint</td>
<td>4-12</td>
</tr>
<tr>
<td>Practice 4a Universal Joint Mechanism</td>
<td>4-14</td>
</tr>
<tr>
<td>Practice 4b Gear Joint Mechanism</td>
<td>4-17</td>
</tr>
<tr>
<td>Practice 4c Cable Joint Mechanism</td>
<td>4-21</td>
</tr>
<tr>
<td>Practice 4d Rack Joint Mechanism</td>
<td>4-23</td>
</tr>
<tr>
<td>Practice 4e Create a CV Joint Mechanism</td>
<td>4-26</td>
</tr>
<tr>
<td>Chapter 5: Simulations</td>
<td></td>
</tr>
<tr>
<td>5.1 Simulating the Mechanism</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2 Compiling a Simulation</td>
<td>5-5</td>
</tr>
<tr>
<td>Replay</td>
<td>5-6</td>
</tr>
<tr>
<td>Animation File</td>
<td>5-6</td>
</tr>
<tr>
<td>5.3 Replaying a Simulation</td>
<td>5-9</td>
</tr>
<tr>
<td>Practice 5a Simulate a Mechanism</td>
<td>5-10</td>
</tr>
<tr>
<td>Practice 5b Simulating the Cam Mechanism</td>
<td>5-17</td>
</tr>
</tbody>
</table>
Chapter 6: Analysis Results ... 6-1
 6.1 Swept Volumes ... 6-2
 6.2 Traces .. 6-5
 6.3 Sensors ... 6-7
 General Steps ... 6-8
 Graphical Output .. 6-10
 File Output ... 6-11
 Instantaneous Values Tab .. 6-11
 History Tab .. 6-12
 6.4 Clash ... 6-13
 Automatic Clash Detection .. 6-13
 Clash Tool .. 6-14
Practice 6a Analysis Results .. 6-17
Practice 6b Clash Analysis ... 6-24

Chapter 7: Data Reuse ... 7-1
 7.1 Assembly Constraint Conversion ... 7-2
 7.2 CATIA V4 Mechanisms ... 7-7
Practice 7a Converting Assembly Constraints I 7-10
Practice 7b Convert Assembly Constraints II 7-13
Practice 7c (Optional) Converting V4 Assemblies 7-19

Chapter 8: Laws in ENOVIA DMU .. 8-1
 8.1 Simulation with Laws in ENOVIA DMU 8-2
 8.2 Using 2D Curves ... 8-6
 Sketch .. 8-6
 Text File .. 8-7
 Sketch .. 8-8
 Text File .. 8-10
 Editing the Command ... 8-11
Practice 8a Laws - ENOVIA DMU .. 8-13
Practice 8b Using 2D Curves .. 8-19